lenskit.metrics.Precision#
- class lenskit.metrics.Precision(n=None, *, k=None)#
Bases:
ListMetric,RankingMetricBaseCompute recommendation precision. This is computed as:
\[\frac{|L \cap I_u^{\mathrm{test}}|}{|L|}\]In the uncommon case that
kis specified andlen(recs) < k, this metric useslen(recs)as the denominator.- Stability:
- Caller (see Stability Levels).
- Parameters:
Methods
__init__([n, k])extract_list_metrics(data, /)Return the given per-list metric result.
measure_list(recs, test)Compute the metric value for a single result list.
summarize(values, /)Summarize per-list metric values
truncate(items)Truncate an item list if it is longer than
n.Attributes
defaultkThe metric's default label in output.
nThe maximum length of rankings to consider.
set_k- property label#
The metric’s default label in output. The base implementation returns the class name by default.