Metrics and Analysis ==================== .. py:module:: lenskit.metrics Base Interfaces --------------- .. autosummary:: :toctree: :nosignatures: :caption: Basic Interfaces ~lenskit.metrics.Metric ~lenskit.metrics.ListMetric ~lenskit.metrics.GlobalMetric ~lenskit.metrics.MetricFunction ~lenskit.metrics.RankingMetricBase Bulk Analysis ------------- .. autosummary:: :toctree: :nosignatures: :caption: Bulk Analysis ~lenskit.metrics.RunAnalysis ~lenskit.metrics.RunAnalysisResult Basic Statistics ---------------- .. autosummary:: :toctree: :nosignatures: :caption: Basic Statistics ~lenskit.metrics.ListLength ~lenskit.metrics.TestItemCount .. _metrics-topn: Top-N Accuracy -------------- .. autosummary:: :toctree: :nosignatures: :caption: Top-N Accuracy ~lenskit.metrics.NDCG ~lenskit.metrics.RBP ~lenskit.metrics.Precision ~lenskit.metrics.Recall ~lenskit.metrics.RecipRank List and Item Properties ------------------------ .. autosummary:: :toctree: :nosignatures: :caption: List and Item Properties ~lenskit.metrics.MeanPopRank Item Distributions ------------------ .. autosummary:: :toctree: :nosignatures: :caption: Item Distributions ~lenskit.metrics.ExposureGini ~lenskit.metrics.ListGini .. _metrics-predict: Prediction Accuracy ------------------- .. autosummary:: :toctree: :nosignatures: :caption: Prediction Accuracy ~lenskit.metrics.RMSE ~lenskit.metrics.MAE Rank Weights ------------ The rank weighting classes (:class:`RankWeight` and descendants) provide flexible rank weights for use in evaluation metrics. The rank-weighted top-*N* metrics (:ref:`metrics-topn`) use these for weighting the recommendations. .. autosummary:: :toctree: :nosignatures: :caption: Rank Weights ~lenskit.metrics.RankWeight ~lenskit.metrics.GeometricRankWeight ~lenskit.metrics.LogRankWeight