lenskit.metrics.RecipRank#
- class lenskit.metrics.RecipRank(k=None)#
Bases:
ListMetric,RankingMetricBaseCompute the reciprocal rank [KV97] of the first relevant item in a list of recommendations. Taking the mean of this metric over the recommendation lists in a run yields the MRR (mean reciprocal rank).
Let \(\kappa\) denote the 1-based rank of the first relevant item in \(L\), with \(\kappa=\infty\) if none of the first \(k\) items in \(L\) are relevant; then the reciprocal rank is \(1 / \kappa\). If no elements are relevant, the reciprocal rank is therefore 0. Deshpande and Karypis [DK04] call this the “reciprocal hit rate”.
- Stability:
- Caller (see Stability Levels).
- Parameters:
k (int | None)
Methods
__init__([k])measure_list(recs, test)Compute the metric value for a single result list.
truncate(items)Truncate an item list if it is longer than
k.Attributes
defaultThe default value to infer when computing statistics over missing values.
kThe maximum length of rankings to consider.
The metric's default label in output.
- property label#
The metric’s default label in output.
The base implementation returns the class name by default.